LAMP-TR-005 January 1997
CFAR-TR-850
CS-TR~3739

The Detection of Duplicates in Document Image
Databases

David Doermann, Huiping Li, Omid Kia, Kemal Kilic

Language and Media Processing Labratory
Instititue for Advanced Computer Studies
College Park, MD 20742

Abstract

Document imaging technology has developed to the point where it is not uncommon for
organizations to scan large numbers of documents into databases with little or no index
information. This may be done for archival purposes, in which case the necessary index
may be as simple as a case number, or with the ultimate goal of automatically extracting
index information for content-based queries. Maintaining the integrity of such a database
is difficult, especially in a distributed environment where copies of documents with differ-
ent physical histories may be scanned at different times. In this paper we present a novel
approach to detecting duplicate documents in very large databases using only features
extracted from the image. The method is based on a robust “signature” extracted from
each document image which is used to index into a table of previously processed docu-
ments. The system is able to deal robustly with differences between scanned documents
with respect to such factors as resolution, skew and image quality. The approach has a
number of advantages over OCR or other recognition-based methods including speed and
robustness to imaging distortions. To justify the approach and demonstrate its scalabil-
ity, we have developed a simulator which allows us to change parameters of the system
and examine performance while processing millions of document signatures. A complete
system has been implemented and tested on a collection of technical articles and memos.

***The support of the LAMP Technical Report Series and the partial support of this
research by the National Science Foundation under grant EIA0130422 and the Depart-
ment of Defense under contract MDA9049-C6-1250 is gratefully acknowledged.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1997 2. REPORT TYPE 00-01-1997 to 00-01-1997
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Detection of Duplicatesin Document I mage Databases £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
L anguage and M edia Processing L abor atory, I nstitute for Advanced REPORT NUMBER

Computer Studies,University of Maryland,College Park,M D,20742-3275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 40
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

LAMP-TR-005 MDA9049-6C-1250
CAR-TR-850 February 1997
CS-TR-3739

The Detection of Duplicates
in Document Image Databases

David Doermann
Huiping Li
Omid Kia

Kemal Kilic

CAR-TR-850 MDA9049-6C-1250
CS-TR-3739 February 1997

The Detection of Duplicates
in Document Image Databases

David Doermann, Huiping Li, Omid Kia and Kemal Kilic

Language and Media Processing Laboratory
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

doermann@cfar.umd.edu

Abstract

Document imaging technology has developed to the point where it is not uncommon
for organizations to scan large numbers of documents into databases with little or no
index information. This may be done for archival purposes, in which case the necessary
index may be as simple as a case number, or with the ultimate goal of automatically
extracting index information for content-based retrieval. Maintaining the integrity of such
a database is difficult, especially in a distributed environment where copies of documents
with different physical histories may be scanned at different times.

In this paper we present a novel approach to detecting duplicate documents in very
large databases using only features extracted from the image. The method is based on
a robust “signature” extracted from each document image which is used to index into
a table of previously processed documents. The system is able to deal robustly with
differences between scanned documents such as resolution, skew and image quality. The
approach has a number of advantages over OCR and other recognition-based methods
including speed and robustness to imaging distortions.

To justify the approach and demonstrate its scalability, we have developed a simulator
which allows us to change parameters of the system and examine performance while

The support of this effort by the Department of Defense under contract MDA 9049-6C-1250 is
gratefully acknowledged.

processing millions of document signatures. A complete system has been implemented
and tested on a collection of technical articles and memos.

Keywords: Document Image Databases, Duplicate Detection, Shape Coding, Document
Indexing

1 Introduction

Steady increases in computational power and affordable storage have allowed very large
heterogeneous databases to be considered as a viable means of archiving or storing doc-
ument images. It is not uncommon to see document collections in excess of one million
images, and in today’s distributed environments, the management, storage, and retrieval
of these collections have become important issues. One primary consideration is in the
generation of the index information used to identify the database object. Traditional
database indexes may contain, for example, administrative data, document ID numbers,
and possibly a small number of keywords which are provided or can be extracted directly
from the data. Image databases, however, typically require the manual entry of index
information since adequately expressive indexes are not alway available. When dealing
with millions of documents, manual indexing is typically not cost-effective.

A second concern is that in an image-based system, traditional organization, search
and retrieval techniques are not ideal, in part because of the sheer volume of information
that images contain. Although documents are a written representation of a language,
a document in image form lacks type content information typically available with text
documents. If accurate and unique index information is available for images, many of the
operations which are handled by traditional database systems is trivial. In cases where
index information is not available, indexing and retrieval remain difficult and challenging
research problems. In this paper we explore one such problem, the problem of detecting
duplicate document images, in the absence of appropriate index information.

Consider a situation where thousands of documents are being imaged and added to
a single heterogeneous database, possibly from a distributed environment. If multiple
instances of the same document exist, they may be re-processed or re-entered unneces-
sarily. This redundancy in the database may not be desirable for a number of reasons,
including increased storage cost, difficulties in maintaining database integrity, increased
processing cost for database operations, and cost of indexing multiple images with the
same underlying content.

It is therefore desirable to have a preprocessing mechanism for detecting duplicate

instances of a document image prior to either indexing it or adding it to a database.
Naturally, the definition of a “duplicate instance” is open to some interpretation, and
may be defined differently for different applications. The level of similarity between
documents is a key factor in identifying what constitutes a duplicate. We will define
three levels of similarity.

A first level of similarity contains ¢dentical documents. These are documents which
are, for all practical purposes, the same even at the image level. These documents
most often result from a scan of a single original manuscript, and multiple copies of the
document’s image file being distributed electronically. We can assume that the images
vary only in the file format or file representation and should be easily identified by
performing either a byte-by-byte file or a pixel-by-pixel image comparison. A second
level of similarity contains image-variant documents which are images that arise from
different instances of the same original document. The originals may have been scanned
at different times, and may have independently undergone various types and levels of
physical degradation. This is often observed, for example, with published documents
that were originally distributed to multiple sites (i.e. technical reports, copies of memos,
etc.). Image-variant duplicates are identical with respect to content and structure, but
may differ substantially at the pixel level and cannot be easily identified from pixel-by-
pixel comparisons. A third level of similarity contains documents which vary in structure,
but contain essentially the same content. This is common, for example, when a document
is originally scanned and entered, and later, a revised or reformatted version of the same
document is added to the database. We will not address the problem of structure-variant
documents since the extent of variation is open-ended.

We are currently addressing the problem of detecting image-variant duplicates, where
multiple instances of an effectively identical original source are scanned for incorporation
into a database. The original documents may have been written on, stapled, torn, taped,
or may have pages missing or a cover added. The document may have been copied
repeatedly, so different-generations of copies may be involved. The document may have
been scanned at different times and on different devices, so resolution, illumination, and

contrast may also be issues. Skew and translation may result in additional distortion.

The goal of our project is to analyze documents which are candidates for being added to
a database, so that when variations of an existing document are presented, the system
is able to identify the duplicates and not process them further. The ability to process
documents without prior indexing is essential if the practical use of large-scale document
image databases is to be successful.

In Section 2 of this paper, we provide a brief overview of the problem of duplicate
document image detection and our proposed approach. In Section 3, we discuss the
systems feasibility and present results obtained using a simulator which allows us to test
indexing mechanisms that involve millions of indices. In Section 4 we provide details of
our implementation and interface. Finally, we discuss experimental results on a database

of technical articles and memos in Section 5 and provide a brief discussion in Section 6.

2 Duplicate Document Identification

2.1 Problem Overview

Let us assume that document images are scanned with the intention of adding the images
directly to a database. Depending on what information is available a priori in the system,
the problem of duplicate detection can be approached in a number of ways. If, for
example, basic index information such as the document number, date, title, authors or
number of pages is entered manually, this information could serve as a preliminary filter
for duplicates. In most cases, however, high-volume operations prohibit such manual
entry prior to scanning. Instead, we would like to identify duplicates directly from their
images. Although we have basic quantitative information such as the number of pages,
at this point we consider only the analysis of the image itself.

One possible solution which has been proposed is to apply Optical Character Recog-
nition (OCR) to the document image and match as much text as possible between the
documents. Although this matching can be done relatively quickly, OCR performance
suffers on degraded documents in terms of both accuracy and speed. For this reason, we
do not feel that OCR is feasible as a first-level filter, but OCR may be used as a secondary

filter, to reduce the number of possible matches from hundreds to tens of documents.

Any approach which we choose should have a number of properties for it to be con-
sidered as a feasible solution in this domain. First, we are constrained by the fact that
we may be dealing with millions of documents, many of which may be highly degraded.

To cope with such situations, we must have a signature for each document which is

Robust - The signature should be reliably extractable, even when the document be-

comes degraded.

Unique - Although we cannot realistically expect the signatures to be unique unless
we use an excessively large feature set, a given signature should be associated with

several tens of documents at most.

Compact - The storage capacity required to hold the signatures of millions of docu-

ments may be very large, so the index keys should be as small as possible.

In addition, the algorithms which extract the signature must be

Fast - Algorithms which take minutes to extract a signature, and then attempt to
match it against each document in the database, are not acceptable. The applica-
tion demands rapid extraction, and near constant time indexing into the database

of previously entered documents.

Scalable - Initially the algorithms will work on hundreds of documents, but as more
documents are processed, and non-duplicates added, the size of the database could

grow to tens of millions.

Accurate - It is acceptable to miss a small percentage of duplicates since the result
is simply that the same document is entered twice, but identifying documents as

duplicates when they are not (false alarms) is not acceptable.

The overall goal of a duplicate detection system should be to either 1) determine
that the document is not a duplicate or 2) accurately identify 10-20 documents of which
it could be a duplicate. In the latter case, other methods of analysis such as OCR,
structural analysis, or human verification can be used as post-processors to eliminate

non-duplicates and confirm duplicates.

Our preliminary experiments have allowed us to draw some general conclusions about
the types of algorithms that will and will not work. First, algorithms which attempt any
in-depth analysis of the document (such as OCR or structural analysis) are not ideal
because they cannot extract the features (recognized characters, in the case of OCR)
robustly enough for degraded documents, and because the resulting index information
would be too extensive. Second, any matching scheme which requires comparison of
the extracted features to a significant portion of the database will fail because of the
computational requirements. An efficient indexing scheme is required.

We have developed an approach which promises to fulfill most of our criteria. The
approach is based on a robust signature consisting of shape codes extracted from the
textual components of the document. In the next section, we describe our approach,
some experiments we have run to show its effectiveness, and research issues which must

be addressed in order to develop the working system.

2.2 Basic Approach

Our approach is based on the extraction of a signature from a representative line of text
in the document image using a shape coding technique. The technique has been used
by a number of authors including Tanaka [8] and Spitz [7] for other document analysis
applications. Shape coding labels the symbols in the line of text based on very simple
shape properties, such as whether the symbols are ascenders, descenders, limited to the
x-line, multi-component, or punctuation, for example. These properties are much more
robust to noise than the features necessary for OCR, and can be extracted fairly rapidly.

To extract the signature, the document is scanned for a representative sample of text,
typically on the order of 50 symbols, on a single line or across several lines. From this
sample, the base-line, x-line, ascender-line and descender-line are identified, and each
character component is assigned a shape code as shown in Figure 1.

The string of shape codes assigned to the characters in the text sample is used as
a signature for the document. A level of robustness is added by indexing based on n-
grams of the shape code string, rather than attempting to use an index based on the

entire string. Fach shape code n-gram serves as an index key into the database. A

6

- 1974,

] T. Kanungo,

 tion, pages 7

e ——— c———

Figure 1: Sample character shape code assignment

L

|
| |

Alphabet size= N

Alphabet al| a2| a3 an

Signature size = m, window size=w

Signawre | 1 | 2 | 3| 4|5 m-2/m-1) m
Windows of sizew
\
Keys —— 1] 2] 3| rewsa |
Keys per singature = m-w+1
Direct
Indexing Tablesize=NY
I ndex w
Table 1 2|3 N
Y Y Y Y Y
5|8 | 8|0 2
- - - - -
T | o | @ | ® @
E 1S 1S IS 1S
3 3 3 3 3
o o o o o
o [@] [@] [@] [@]
o o o o o

Figure 2: Overview of the indexing scheme.

single dropped or inserted code may affect at most n of these keys but will not affect the
entire signature. Figure 2 shows the relationship between the signature, its keys, and the
database. When a set of keys is presented for indexing, each key results in a collection of
hits from the database. Each hit is a vote for a document, and a ranked list of documents

can be returned.

Clearly, a number of additional issues should be addressed in developing a system

that satisfies the criteria set forth above. These include:

e use of global classifiers - number of pages, page component statistics, etc. as first-

level filters to reduce the duplicate search space.

e choice of a shape code alphabet - selection of features to incorporate into the sig-

nature which provide maximum discrimination.

o extraction of features - how to select the signature in the image of a document.

8

e database organization and indexing - how to create efficient ways to index into large

collections.

e verification of candidate duplicates

All of these issues will be addressed in the design phase.

2.3 Related Work

The detection of duplicate or near-duplicate documents has been a problem of interest
for some time in many fields, but has not been addressed until recently for collections of
images. Some example domains include Education, for detection of plagiarism [5]; Pub-
lishing, for detection of unauthorized copies [3, 6]; Databases, for maintaining database
integrity; Information Retrieval, for information filtering [9]; and in the USENIX com-
munity, for detecting duplicate files [10].

In the document community, most of the work on identifying similar documents has
been done using either ASCII documents, or “water-marked” electronic representations.
Much less work has been done with document images. A notable exception is Hull [2],
who describes a method for matching documents which have the same character content
but which may have been reformatted or distorted prior to re-imaging (content-variant
documents). Hull’s approach represents each document by a set of robust local features
which can be used to hash into a database of descriptors. The features in both the query
example and the database must be invariant to geometric distortions; by extracting
multiple descriptors from each document, they can also be made robust to errors in
feature extraction. The measure of similarity is simply the number of features the query
document and the database instance have in common. Experiments were performed using
as features the character counts for each word in short sequences of words; this provided
a set of simple yet robust features that was adequate for small databases. With as few
as ten features, 100% accuracy was obtained for a clean query string and a small clean
database. Unfortunately, as the number of documents grows, the character count metric

becomes less discriminatory.

3 System Feasability

3.1 Theoretical Analysis

Before implementing and testing our approach on real data, we performed a theoretical
analysis to see if our design is realistic and if it is robust to errors in signature extraction.
The parameters that were varied in our analysis included system-dependent variables
such as file size limitations of the operating system, disk access time and disk transfer
rate; database variables such as the number of documents, the size of the index table
and the average size of the documents; and algorithm variables such as the size of the
signature alphabet, the size of the signature and the key or n-gram size.

The analysis yielded qualitative estimates of the expected size of the database, the
computational requirements for matching signatures, and the number of missed and false
duplicate detections as functions of the database size. It was found that the system could
be implemented with generally available hardware.

The details of the analysis are given in Appendix A.

3.2 Simulation Analysis

To demonstrate the technical feasibility of our approach to coding indexing and retrieval
we performed several experiments using ideal and corrupted shape code data. A simulator
was developed which allowed us to explore a variety of coding, indexing and database
organization scenarios, without the need to address feature extraction issues. The goal
was to show that signatures can be obtained which are unique enough to be used for
indexing and that the database of indexes scales appropriately.

Our simulator takes as input ideal ASCII text and maps the characters determin-
istically into appropriate shape codes, thus simulating perfect feature extraction (see
Figure 3). Using the resulting signature, we can explore various indexing options, and
test the uniqueness of the signatures on large databases. Since text databases are widely

available, a large-scale system can be simulated at relatively low cost.

10

Database Creation

IDEAL Document
TEXT Database

SIGNATURE INDEX KEY |
: [| GENERATION GENERATION :

Database Indexing

SIGNATURE INDEX KEY INDEX
CORRUPTION GENERATION SEARCH

Figure 3: Simulator overview

3.2.1 Experiment 1

In our first experiment, we used a small database so that we could examine and track
individual signatures through the system. We extracted 5000 lines of text from an elec-
tronic version of the Wall Street Journal each of which contained at least 50 symbols.
Each line was treated as an independent document so the database would represent 5000
document images (i.e. 5000 signatures of length > 50). We chose a shape code alphabet
of size 8 (shown in Table 1), and a key length of 5 (i.e., a set of 5-grams was generated
from each signature). An example of a text line is shown in Figure 4 along with its shape
code signature and some of the defined index keys. The keys were then stored in the
database.

Our indexing experiments were divided into two parts. Part [was designed to examine
the distribution of scores for known duplicates, corrupted duplicates and non-duplicates
matched against the database. This would give us an idea of the uniqueness of the
signature keys. Part Il was designed to look at the distribution of the ranks of retrieved
duplicates in the top 20 positions. This would allow us to judge the effect of noise
on individual instances. To address the robustness of feature extraction, we further

enhanced the simulator by building a noise and degradation model into the system.

11

Table 1: Table of shape codes and symbols to which they apply
Index Shape Code Description Members

0 - space blank

1 X ascender '% () 12357<>?7?CEFGHI]J
KLMNSTUVWXYZ[]fhklt

2 y descender , . -y

3 e xline * 4 .:;=cmnrsuvwsxaz

4 A ascender with hole #$& 04689 ABDOPQRbDBA

5 g descender with hole gPda

6 a xline with hole aeo

7 i ascender mark ij” "

[3[a[n[u[a[r[y[[a[n[d] [1[0[1]% [a] [y[e[a[r| [e[a]r[t]i]e[r].| [of ple[ra[ti[n[g] [rlat]e[s] [¢]

(Xa[x[x[a[x]y[-[a[x]A-[XXAXX-[a]-[y]a[a[x[- [a]a[x] Xi[a] Xy]- [A] g a[x/a[Xi]x][g]- [x[a[Xa]x]-[x]
[1]6[3[36[3[2[0]6[3[4]0[1]4[1]1[0[6] o[2[6] 6[3[0] 6] 6] 3] 1] 7[6] 3] 2[o[4] 5[6[3] 6] 1] 7[3] 5[0[3] 6] 1] 6] 3] O] 3]
[1]6]3[3]6][3][2]0]6]3] . . .
[6[3[3[6[3] ...

[3[3[6[3[2] - -

[3[e[3[2[0] - -

Figure 4: Shapesaodpkefsiogmature 831 and its index k

The model corrupts the data by randomly perturbing a fix
each signature, thus simulating errors in shape coding.
the database was clean and we applied the model prior to
documents.

In Part T of the first experiment, a set of signatures kn
first matched against the database.

Results of matching a

shown in Table 2 for the cases when 0, 5, 10, 15 and 20 er

see that the highest-ranked match is the correct docume-
15 errors (icéth3e0fymbols corrupted). Table 2 shows that
score drops considerably when there are only 5 errors, th
significantly higher score than alternative choices. The
scores suggests that the matchisnot simplyrandom, but
candidate.

of the features

To test the robustness , we also matched

that were not in the original database (i.e. documents |

12

Table 2: Scores of line 831 in [candidate (score)] format.

Breoe e I v] 2] s | 4 [s | e [7 | 8 [o |
0 831(46) | 3984(16) | 839(14) | 3734(14) | 834(14) | 3752(13) | 828(13) [3990(13) | 3749(12)
5 881(25) | 708(10) | 218(10) | 1029(10) | 2788(14) | 2789(13) | 4474(10) | 4498(10) 834(9)
10 881(25) | 1990(7) | 3827(7) | 3984(7) 742(6) 3909(6) 2235(6) 4118(6) 541(5)
15 831(9) 790(6) 839(6) 984(6) 1888(6) 2394(6) 2397(6) 2402(6) 2589 (6)
20 387(3) 1421(3) | 2066(3) | 2952(3) 2955(3) 2959(3) 2990(3) 2994(3) 2999(3)

Table 3: Scores of line 5416, which was not in our database, in [candidate (score)] format.

oo™ I v [2 | a3 [& [s [e [7 | 8 [o |
0 828(12) | 834(10) | 3390(10) | 4598(10) | 888(9) | 2317(9) | 2350(9) | 223(9) | 4530(9)
5 801(6) 822(6) 1872(6) 1882(6) | 2208(6) | 2635(6) | 1959(5) | 2159(5) | 1573(5)
10 3390(8) | 2684(6) | 1823(6) 4530(6) | 3373(5) 62(5) 4489(5) | 1636(5) | 4546(5)
15 2726(5) | 2838(5) 397(4) 732(4) 941(4) | 1593(4) | 2027(4) | 2097(4) | 2498(4)
20 544(9) | 2027(9) | 4727(8) 1482(7) 489(7) | 2274(7) | 2620(7) | 3383(7) | 3512(7)

Table 3 shows the match scores for such a text line. A combination of low scores and
the similarities among the top scores give us an indication that this candidate signature
is not a duplicate.

It is interesting to note that the scores for a text line that is not in the database (i.e. a
non-duplicate text line) are higher than those for a text line that is in the database when
15 errors were introduced. This is due to the fact that corrupted text begins to form
shape code keys that could not possibly correspond to words which appear in the English
language, and thus it receives a lower score when matched against a real database. The
keys in the non-duplicate text line, however, still correspond to valid keys, and receive
higher scores. This gives us a quantitative measure of the similarity between signatures
taken from non-duplicate, English text.

In Part IT of the first experiment, we randomly chose 100 valid duplicate signatures,
matched them against the 5000 signatures in the database, and recorded how often the
correct match was ranked in the the top one, two, five, and ten positions. The results
are shown in Table 4 for candidates corrupted with 0, 5, 10, 15 and 20 errors. We see
that the correct match was consistently in the top position when there were 10 or fewer
errors.

In practice, the variation between two documents which are image-variant duplicates

of each other is typically due to factors such as notes, photocopying and aging, and to

13

Table 4: Top duplicate candidates in 100 queries

Added Errors Top 1 Top 2 Top 5 Top 10 Top 20
0 100 100 100 100 100
5 100 100 100 100 100
10 100 100 100 100 100
15 51 58 69 77 100
20 17 21 24 30 100

Table 5: Number of duplicate candidates detected in 2500 queries from a pool of one
million documents.

Added Errors Top 1 Top 2 Top 5 Top 10 Top 20
0 2416 2443 2458 2465 2467
5 2379 2419 2447 2457 2463
8 2059 2202 2327 2390 2431
10 1403 1678 1905 2039 2181

characteristics of scanning processes including resolution, density and skew. We therefore
expect few “differences” in the shape codes of duplicate documents, so the introduction

of 20 errors is more then sufficient.

3.2.2 Experiment 2

Our second set of experiments involved a much larger number of signatures. We used
text data similar to the data used in Experiment 1, but we used the text to create a test
database of one million signatures. We then chose 5000 signatures to simulate incoming
documents. 2,500 non-duplicate signatures were chosen from a different corpus and 2,500
random duplicate signatures were chosen from the Wall Street Journal corpus.

We first ran the signatures of duplicate documents through the matching process
which allowed us to study the distribution of matching scores. In evaluating the results,
we observed that some matches produced scores greater than the expected maximum of
50. This is because it is possible for a key to occur more then once in a signature. We
also noted that some signature lines occurred more than once in the database, resulting
in false duplicates. The first line of Table 5 shows the number of detected duplicates out
of 2500 ranked in the top 1, 2, 5, 10 and 20 positions!.

Next, we ran corrupted signatures of duplicate documents through the matching

1Some of the lines in the original database occur more than 20 times, so the “true” duplicate may not
appear in the top 20. That is why even in the 0 error case, the 2500 documents were not all detected.

14

100 Errors=0

95 Errors=5

90

Errors=8

85

80

751

Errors=10

Percentage of Duplicate Retrieved

55 | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Documents Retrieved

Figure 5: Percentage of duplicate documents identified in the top n candidate documents
retrieved.

process, perturbing them by introducing fixed numbers of errors (5, 8 and 10). The
numbers of duplicate documents ranked in the top 1, 2, 5, 10, and 20 positions for these
levels of errors are shown in the bottom three lines of Table 5. Figure 5 shows the
percentage of detected duplicates? as a function of the number of documents retrieved
for each of the error levels. We see that even when there are 10 errors, in a signature of

size 50 we can detect duplicates more than 84 percent of the time.

4 TImplementation

Having tested the index features and the robustness of the signature matching process,
the remaining task was to implement and test the line extraction and signature coding
processes using image data. With degraded documents, the most critical aspect of the

system 1s its ability to extract the same representative line from multiple instances of

?The “recall” of a retrieval system can be defined as the number of relevant documents which are
retrieved divided by the number of relevant documents in the database. We have plotted the number of
duplicates identified, divided by the total number of duplicates.

15

a document. Figure 6 shows a candidate document and a representative line extracted

from it.

4.1 Representative Line Extraction

The representative line extracted from each image is a text line which has a sufficient
number of characters to be used as a signature. For efficiency we divide the page image
horizontally into thin “zones” and analyze the zones in vertical order from top to bottom.
When a representative line is found, we do not process any portion of the image below
it.

To begin, we apply a single-pass connected component algorithm to identify compo-
nents within the zone of interest. To deal with noise, we want to eliminate components
which appear to result from copier degradation or graphics. We use conservative thresh-
olds on the component size to eliminate components whose sizes are less than Tpts or
greater than 14pts. Although this may result in the loss of some punctuation marks
and other small symbols, they are likely to be lost in both the original and duplicate
documents, and not affect the match.

Next, the symbols are grouped into “words” using a smearing algorithm whose dis-
tance is a function of the average component width. Thresholds are applied to the height
and width of the words to eliminate words which would not likely contribute to a unique
signature.

Using a second smearing process, we group the words into a line. After line groups
are formed, we begin at the top of the zone, and search for a valid line. A valid line is
a line which 1) has a sufficient number of characters and 2) contains both ascenders and
descenders. The first restriction insures that we have a signature which is sufficiently
long, and the second restriction allows us to avoid lines such as titles which may consist
entirely of capital letters, as well as lines consisting entirely of numeric data. If no valid
lines are found in the current zone, the next zone is considered and the process is repeated
until a valid signature line is found.

In order to avoid begin fooled by running heads or other information which is not

unique to a given document, we skip the first two valid lines, and consider the third valid

16

Rheological Properties of Drilling Fluid 375

Clay Suspension

AV YP
(P (1b/100 i3y
i 9
1.25 05
2.25 LS 8
2.75 LS o Plastic viscosity
- TF o Apparent viscosity
3.0 10 bl
36 20 I 6F
35 2.0 i s
3
3.75 35 €
4
8 4
2
475 35 g
2
5.5 4.0 & 5l
e
6.0 4.0 5
3 &
‘ A 2+ o s
¥
35 10 %
i 4 g
4.5 1.0 €
7.5 5.0 * s . " n .
¥ ° 2 “ B 3 0 12 3
7.25 55 © Concentration of NaCl —— * (W)
B [Figure 5._PIot of plastic and apparent VIScosity versus NaCT CORCEmation]
7.5 5.0 i
- , the formation of a quasi-crystalline structure is favored. Regarding the formation of
_ Blxotropic gel, which represents geiling on standing, this is favored by aging, probably
14.5 210 Bause the packets of lamellac are dispersed, due to swelling effect, but only to a certain
- nit because in the concentrated suspension, the structure is so rigid that it is unaffected
22.5 30 B aging. But with an increase in concentration, thixotropy always increases, due to the
i [mation of a card house structure that is more favored.
2.6 327

of NaCl. The general trend of curves of apparent viscosity and yield value is
ar in nature, with sharp maximum for low concentration of NaCl and a gradual low

33.4 512 imum with increasing concentration of NaCl added, as shown in Figures 5 and 6 and
38.0 66.0 The action of on clay is attributed 1o the forma-
D

b of electric double layers on the surface of clay particles. Such potential forming

Figure 6: The representative line chosen for a document with mixed text and graphics

line as the signature for the page. If this is done consistently, it will provide us with a

meaningful signature to index the document.

4.2 Shape Code Extraction

Once a valid line is found, the next step is to extract its signature. The presence of
factors such as uncorrected skew may cause difficulties with shape codes by extracted at
the line level, so we extract the shape codes by considering a word at a time.

We begin by roughly classifying the symbols in a word into three groups by height:
small symbols like punctuation, medium-height symbols such as ‘a’ or ‘c’, and tall symbols
such ascenders, descenders, parentheses, etc. We use a medium-height symbol from the

middle of the line to define an xheight hypothesis, using the bottom of the symbol as

17

XHeight Hypothesis

xline

F W baseline

Figure 7: Example xheight hypothesis, xline and baseline

e a

X i g - X Y - X X a X - (o] X -y X i
e 3 ’ L -
igure 5. Plot of pl

Figure 5. Plot o

Figure 8: Shape coding results for part of the line shown in Figure 6.

the baseline and its top as the xline (see Figure 7). Starting from this seed s
encode the line outward in both directions. The idea is to adaptively use ea
and its new neighbors to predict and refine the position of the baseline on eac
If the symbolis apunctuation mark (i.e. it does not span the region between t
and the xline, or it extends into both the ascender and descender regions),
but do not adjust the x or baselines. If the character is an ascender, we so c
adjust the baseline to the bottom of the character. Ifit is a descender, we so
adjust the xline to its top. Finally, if it covers only the xheight region, we ¢
the xline and the baseline.

After all the characters in the word are classified, holes are identified and -
are refined if necessary. Figure 8 shows an example of the results of coding.

The shape coding process is very accurate for clean data which is not sig
skewedA problem arises when many characters touch; the system may skip an ot
valid line. This tends to occur when documents are photocopied repeatedly,
thresholded, or are significantly degraded physically. For example, if the o
printed with a laser printer, and our duplicate candidate is a third-generation
enough symbols may touch to put us below the signature length limit. But as

in Section 3.2, even when there are 10-15 shape code errors, we can still detect

18

Figure 9: User interface.

4.3 Interface

A user interface has been implemented in Java to provide users with an easy way to
interact with a database (Figure 9). It allows the user to select a database and verify
either a single document or group of documents. The retrieved documents are ranked
and presented for confirmation along with a quantitative measure of similarity. If the
candidate document is not found in the retrieved set, the user can add it to the database.
Otherwise, the user can select a retrieved document and mark it as a duplicate, mark it
as “similar” or mark it as unknown. Log files are generated to track documents through
processing and indexing.

The computational requirements for the system are reasonable. The image processing,
including thumbnail generation, takes about 7 seconds per document, indexing into a
database of one-million documents takes another 2 seconds, and displaying 20 candidates
takes another 2 seconds with unoptimized code and a SPARC Ultra-1. The first two

phases can be performed offline in batch mode.

19

Table 6: Results of matching 307 duplicate document images against a database of
approximately 1000 documents.

Top 1 Top 2 Top 5 Top 10 Top 20
Number of Correct Identifications 286 296 298 302 307
% of Total 93.2 96.4 97.1 98.4 100.0

5 Experiments with real images

For our experiments with real document images, we used the University of Washington
Document Image Databases [4] in which the data consist primarily of technical journal
image pages scanned from first and third generation photocopies of the original docu-
ments, and memos scanned directly from original documents.

In an initial experiment, 1035 image documents were inserted into a database. As
each new document was added, the top-ranked 20 documents were returned along with
their match scores. As expected, the average match score was low (20%). The average
difference between the match scores of the top two matched database documents was
also low (about 4%); thus no retrieved document stood out as significantly more similar
to the candidate document.

We then tested 307 duplicate documents which were third-generation photocopies of
the originals®. Some of these copies were significantly degraded. For these duplicate
documents the verification procedure was followed, but without adding the candidate
documents to the database. The top 20 database matches were determined for each
candidate document, along with their match scores. The average score for the top match
was over 75% and the average difference between the scores of the top two matches was
over 48%. The average match score for the second-ranked match was only about 20% and
similar to the scores of the top-ranked non-duplicates. Clearly, the duplicates tended to
have significantly higher match scores than the second-ranked non-duplicate documents.
Table 6 shows the distribution of rankings for the 307 duplicates.

All of the errors in the top-ranked documents were due to significant numbers of

merged characters which resulted in missing the representative line completely. We are

3These photocopies were also present on the UWASH CDROM.

20

testing an improved character segmentation scheme which is not based entirely on white
space, but also uses character width statistics. We anticipate that this approach will
reduce the errors by as much as 75%.

It should be pointed out that our experiments have used only the shape code features
for document identification, and have not considered other features such as the number
of pages in the document, the number of lines on a page, or the density of the page, for

example. A more advanced system could also make use of such features.

6 Discussion and Conclusions

The problem of duplicate document image detection is of great importance, not only
within a single database, but also for image query engines of the future which operate
across multiple databases.

If we can reduce the number of duplicate document candidates to a manageable size,
more refined algorithms that directly compare the images can be used, or thumbnails of
the top 20 candidates can be rapidly presented to an operator to verify that a duplicate
exists. One advantage of not using structural information for indexing is that non-
duplicate candidates tend to be visually very different from the query document and can
be eliminated rapidly by the operator.

The novel approach to the problem of duplicate document detection described in this
paper shows great promise, as demonstrated both by the simulation results on a million
documents (Section 3.2) and the experimental results on a small image database (Section
4). We can deal more robustly with small image distortions and have the advantage over
competing approaches that we do not need any content-level information, either a priori
or as part of the analysis process.

It appears that a system could be developed within current limitations on system
resources which would provide a cost-effective solution to the problem. It is estimated
that in some large applications, as much as 25% of the cost could be saved by identifying

duplicate documents.

21

References

1]

D. Doermann, H. Ii, and O. Kia. Duplicate document image detection. Technical

Report CS-3739, University of Maryland, College Park, 1997.

J.J. Hull. Document image matching and retrieval with multiple distortion-invariant
descriptors. In Proceedings of the International Workshop on Document Analysis
Systems, pages 383 — 400, 1994.

N. Shivakumar and H. Garcia-Molina. Scam: A copy detection mechanism for dig-
ital documents. In Proceedings of the 2nd International Conference on Theory and

Practice of Digital Libraries, 1995.
University of Washington. Document image database collection. CDROM.

A. Parker and J.O Hamblen. Computer algorithms for plagiarism detection. IEEE
Transactions on Fducation, pages 94-99, 1989.

H. Garcia-Molina S. Brin, J. Davis. Copy detection mechanisms for digital documents.

In Proceedings of the ACM SIGMOD Annual Conference, 1995.

A.L. Spitz. Using character shape codes for word spotting in document images. In
Shape, Structure and Paltern Recognition, pages 382-389. World Scientific, Singapore,
1995.

H. Tanaka and A. Kogawara. High speed string edit methods using hierarchical files
and hashing technique. In Proceedings of the International Conference on Pattern

Recognition, pages 334-336, 1988.

T. Yan and H. Garcia-Molina. Duplicate detection in information dissemination. In

Proceedings of the Very Large Database Conference, 1995.

[10] U.Manber. Finding similar files in a large file system. In Proceedings of the USENIX

Conference, pages 1-10, 1994.

22

A Feasibility Analysis

This appendix presents a theoretical feasibility analysis demonstrating that the system
design is realistic and that it is robust to anticipated errors in the signature extraction.
The analysis assumes we have extracted a candidate signature. The signature is a vector
of feature values used to represent the document, and a key, possibly resulting from
a partitioning of the signature, is used to index into the database. The parameters
listed below will be used in the feasibility and performance analysis of the algorithm. A
majority of the parameters reflect physical constraints of the system and are necessary

to explore scalability.

System-Dependent Parameters

F : Maximum allowable number of files in the operating system.

S @ Maximum allowable size for a single file in the operating system.
K : Main memory size used for processing buckets.

tq : Disk access time in sec.

t,m : Memory access time in sec.

t; : Disk transfer rate in bytes/sec.

Algorithm-Dependent Parameters

N : Number of documents.

Ny @ Maximum number of files for the index table.

Sy : Maximum file size for storing b buckets.

£ : Size of index table entries in bytes.

d : Average size of documents in bytes.

[: Number of buckets that will be kept in the main memory.

b : Number of index table buckets that will be stored in a file in main memory.

23

Independent Variables

a : Size of alphabet used to construct the signature.
m : Size of the signature.
w : Window size.

k : Number of keys for a given signature size (rn —w + 1).

A.1 Analysis of Indexing

The matching algorithm relies on an index structure that is generated as documents
are added to the database. FEach signature is partitioned into equal-sized overlapping
windows of size w, to be used as index keys. This partitioning provides robustness in the
sense that errors in the signature will only be propagated within the window, but the
smaller key size results in a less unique set. For a signature of size m, k = (m —w + 1)
possible keys (Figure 2 in the main text) must be indexed. The index table has on the
average k X (aﬂw) entries per bucket with each entry being the identification of a document
which contains that key. Figure 10 shows the index table structure.

An array with a maximum size of min { N, (k2 x (a%))} keeps a count of the documents
which contain keys that have matched to the input key. When the document’s keys are
indexed, a counter is incremented for each document which contains that key. The most
frequently occuring documents are then identified as candidate duplicates. A further
level of refinement can be achieved by using a more elaborate matching algorithm that
includes the positional matches between the keys, but this is not covered in this analysis.

The search time for the matching operation can be generalized as follows! :

Worst case search time = Bucketsearch 4+ Diskoperations (1)

b E ExN
_ kx((kxlxtm%(m#))
av t

i: If the bucket size stored in the file is greater than K| then to search the entire file requires multiple

24

Documents containing the input index key
Input Index Key

- (m-w+1) LW Number of outputs
a

W
d jnput combination

doc# doc#

\
Bucket

Figure 10: The index table.

Note that every document signature has k index terms, and each bucket has an
average of (k x alw X 1,,) entries. Here, the disk access time (¢4) is multiplied by the
number of windows, since in the worst case, every indexed bucket is in a separate file.
The transfer time (¢;) is the time required for reading the buckets from the disk, and
since disk operations are more expensive than memory operations, the number of buckets
that are stored in a single file should be optimized to decrease disk access time. We can
choose b such that the file size for the b buckets is not greater than the main memory
size (I < b), thus minimizing the disk access time.

These parameters should also be chosen not to exceed the limitations of the operating
system. There is an upper limit on the maximum allowable number of files (#) and on

the maximum allowable file size (5) in every operating system. Since we have a large

amount of data, the index table structure should be within these limits even if we have

disk accesses. Here the disk access time (¢4) is assumed to be 9 ms. The memory access time (¢,,) is
100 ns and the transfer rate (¢;) is assumed to be 15 MB per sec.

25

to partition the index table. The maximum number of files to store index buckets is

Ny =L <F 2)

aw
b
(the total number of buckets (a") divided by the number of buckets in a single file

(b)) where F'is the operating system restriction on the maximum number of files. The

maximum file size is then

Sf:(kXNxbe)gs (3)

a/u)
or the number of entries per bucket multiplied by number of buckets in each file and
the entry size in bytes. Since each bucket has a maximum of (k;—N) entries, if we keep [

w

buckets in memory, then the following constraint should be satisfied:

kx N

au}

(I x x F) < K. (4)

The construction of the index table should satisfy (2), (3) and (4). The overhead associ-

ated with the index table can be estimated as

kEx FE

Overhead = 7 (5)

Note that equation (5) is independent of N, the number of documents in the database.

A.2 Performance Analysis

To characterize the performance of a given system we must first formulate several prob-
abilistic models and define a design criterion. This is done by using hypothesis testing
and deriving an appropriate distribution function such that specific performance mea-
sures can be computed. For a hypothesis test consider two events, the null event and the
alternative event. The Null event, Hy, is that there is no duplicate for a given document,

and the Alternative event, Hy, is that there is a duplicate.

Hy - Null Hypothesis P(n|Ho) (6)
H; : Alternative Hypothesis P(n|H;)
Associated with each hypothesis is a probability measure 5, the probability of detection.

For detection, a threshold is used to determine which hypothesis is valid. In this case

26

n represents a matching score assigned to an observation. By choosing an appropriate
threshold 7 we make the decision that if n > ny we accept the Alternative hypothesis,
and if n < npr we accept the Null hypothesis. The probability of detection and the

probability of false alarm capture the performance of this detector:

Pp(nr) = P(n>nr|H) (7)

Pra(nr) = P(n>nr|Ho)

These numbers will be used as operating specifications given various parameters, but to
fully specify Pp and Pr4 we need to analyze or make assumptions about the data and
the matching processes.

Given a signature of size m from an alphabet of size a and an observation (or index
key) of size w, define x; to be the ith symbol and y; to be the jth index key. With
z; € X; = {0,1}1°82(%) it is easy to see that all the z;’s are independent. In fact

PX=2)=[[P(X;=2) forzeX= 6 X; = {0,1}mloe(® (8)

i=1 i=1

Let us define y; = {@;, Ziq1, s Tizw—1}; y; is clearly dependent on y;41 to yiyw—1. As
described in the previous sections, the y;’s will be used for indexing into a signature
database and the number of hits determines . When indexing, however, there is no
dependence on the order of the observed y;’s, and in a hypothetical situation two docu-
ments could have large numbers of hits resulting from matching y,’s out of order. Smaller
keys would increase this effect and larger keys would decrease it; In most cases, however,
we can argue that the y; values used to calculate n are independent. We shall assume
that it is equally likely (with probability a%) to observe any ;.

Given these conditions, a signature contains a set of features y; for ¢ = 1,2, ... k.
Since each y; is now treated as an independent observation and we have k observations,

we can compute the probability of n matches out of k trials to be binomial, b(k, =):

v () (& (-2 o

Equation (9) is the probability of the number of matches given the Null hypothesis,

P(n|Hp). This probability measures the relationship between different signatures and
27

is relatively easy to understand and compute. The assumption that the occurrences of
keys are equally likely, however, is unrealistic. For example, it is unrealistic to have all
descenders in a window observation. We therefore attempt to obtain realistic probabilities
of key occurrences empirically and revise the probability distribution function of the
NULL hypothesis. The probability measure for the Alternative hypothesis, however, is
not so trivial.

To derive the probability distribution of the Alternative hypothesis, we must consider
what realistic errors may be observed between a candidate signature and its corresponding
entry in the database. The discrepancies between observed and recorded signatures can
be characterized as insertions, deletions, or substitutions of shape codes. In general,
errors increase with degradation, so we assume that the probability of observing ¢ errors
is a decaying exponential function, defined by a decay rate 3 . The general form of this
function is P(i) = P(0)e™"*, where P(0) is calculated given 37 P(:) = 1. Calculating
P(0) and formulating the distribution function we get

. 1 —eF .
P(i) = P(O)eﬁZ = (1_—;(4_1)) e P fori=0,1,...,m. (10)

This equation is approximate since this probability measure depends on the accuracy of
identifying shape codes, the statistics of shape codes, and the similarity of duplicates
found in the database. It is, however, impossible to characterize the statistical nature of
these measures, so we have simplified the expression to an exponential function. In order
to formulate the probability distribution of the Alternate hypothesis we need to study
the relationship between the number of errors and the matching score. In the case where
a single error occurs, the error is propagated to w of the k index entries. This results
in a matching score of £ — w out of a maximum of k. Although the errors might occur
at either end of the signature, and insertions and deletions may change the matching
score, these occurrences are statistically insignificant and offset each other. For multiple
errors, the worst-case scenario is when errors occur w shapes away from each other so the

errors propagate to the most keys. For this worst-case scenario, ¢ errors will translate to

28

a maximum matching score of

k—iw fori=0,1,..,|%
Nworst = T ij (11>
0 otherwise
For the best-case scenario, the errors could occur next to each other, yielding a maximum

matching score of

Mot = k=[] w k=i fori=0,1,.k (12)

w

The probability that worst-case or best-case errors occur is clearly dependent on the
number of errors. This is true since, by definition, : = 1 results in a lower bound and
© = m results in an upper bound on the matching score. It is also true that the score
probabilities change as a power function of the number of errors, and their analysis is
extremely complex. Therefore, for simplicity, we will assume that the matching score is

an average of the worst and best case scenarios:

2i) = Nworst + Nbest _ k— =X fori=0,1,..., Lf—_flJ (13)

Using Equations (10) and (13), the probability distribution function of the Alternative
hypothesis 1s fully specified. We are now able to calculate the probabilities of detection
and false alarm.

Given a threshold 57, any document with a higher score is identified as a duplicate, as
shown in equation (7). We must now apply this criterion to the probability distribution
functions of the Null and Alternative hypothesis to get the probability of false alarm and
probability of detection, respectively. Equation (9) shows the distribution function of the
Null hypothesis, and summation over n = 5r, ..., k gives the probability of false alarm:

k k 1\" 1\ k-7
Pra=Plzarli) = 3 | | (o) (1-=) (14)
e \ 1 a a
In order to calculate the probability of detection we need to consider the inverse of
equation (13) to be used in equation (10). Using npr and solving for ¢, the maximum
number of allowable errors such that the effective score equals the threshold score:

2(k=n7) ¢ s Kw=1)
Imaz = e o w (15)
k —nr otherwise

29

[N

Probability of Detection
o o o o o o o o
N w B (%) D ~ o ©
T T T T T T T T
| 1 1 L | | 1 L

o
H
T
i

(=)

01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of False Alarm

o

Figure 11: Typical ROC Curve

Then summing equation (10) from zero to t,,, gives the probability of detection:

Po = Pl 2 arlih) = 35 (1) (16)

0\ 1 — eflm+1)

Given equations (14) and (16), it is possible to plot the probability of false alarm with
respect to the probability of detection as a function of the threshold 7. This plot is
traditionally called the ROC (Receiver Operating Characteristic) curve; it is shown in
Figure 11 for a typical case. In the pioneering days of radar technology, microwave
engineers drew such curves for a number of signal power levels to determine the optimum
operating point. We will perform a similar task, but instead of varying signal strength
we will vary signature length, alphabet size, and window size. Figure 11 shows a diagonal
line which signifies the minimum achievable performance. The diagonal line represents
picking the Null or the Alternative hypothesis based on a coin toss; if an algorithm

performs below this line, a coin toss would perform better.

30

A.3 Operational Scenarios

The following example represents a possible document management scenario. If N =
50 million, each document has an average of 10 pages and each page (TIFF file) has an
average size of 100K B, so that the size of the database is approximately 50,000 GB,
assuming it is necessary to keep all images. The index table has size 46 x 50M x 4Byte =
8.6GB assuming N = 50M, m = 50, w = 5, and a = 8 since each document will be
indexed by k& = 46 keys. This means it is not possible to store the table in main memory.
A 4 Byte representation of the document identification number can be used for the 50M
documents. Each of the 32K buckets in the index table has an average of 69K document
identification entries.

This scheme has two limitations that are imposed by the UNIX file system. The first
is that the size of the index table cannot exceed the size of main memory, so disk caching
is required. The second limitation is that the entire table cannot fit within a single file
(8.6 GB), so it must be divided into a number of smaller files that are within the limits
of the maximum file size imposed by UNIX.

Table 7 shows the index table size and the number of entries per bucket for differ-
ent numbers of documents. To calculate the search time we use {3 = 9 msec, t,, =

100 nanosec, and ¢, = 15 MB/sec.

N Entries | Index table | Expected search
(million) | per bucket | size in GB time in sec
10.0 14039 1.7 0.64
20.0 28077 3.4 0.87
30.0 42115 5.1 1.10
40.0 56153 6.9 1.33
50.0 70191 8.6 1.56

Table 7: For m = 50, w = 5, a = 8 the index table has 32K buckets.

Table 8 shows index table characteristics and an estimate of the running time of
the algorithm for different alphabet sizes. In the first two rows, the search time is
larger than the other values, due to the large bucket size. This requires multiple disk
accesses to search all of the buckets. However, in the other cases the whole bucket can

31

be stored in main memory, requiring only one disk access. We can see from Table 8

that a smaller bucket size is desired for faster search. But this can only be achieved by

increasing a, which means greater preprocessing time for extracting shape codes, and

possibly decreases the robustness.

a Number Entries Bucket | Buckets | Bucket file | Number | Expected search

of buckets | per bucket | size (MB) | per file | size (MB) | of files time (sec)
4 1024 2246094 8.6 1 8.6 1024 38.68
5 3125 736000 2.8 1 2.8 3125 12.82
6 7776 295782 1.1 1 1.1 7776 5.23
7 16807 136848 0.5 3 1.6 5603 2.64
8 32768 70191 0.3 7 1.9 4682 1.56

Table 8: Index table characteristics for w =5, m =50, N = 50M, K = 2MB

Table 9 shows index table characteristics and an estimate of the running time of the

algorithm for different values of w. The number of documents is 50M, m = 50, a = 8.

The first two cases have significant search time ranges due to the large bucket size. We

can see from Table 9 that the search time decreases as w gets larger, but a larger w

means a more error-prone system.

w Number Entries Bucket | Buckets | Bucket file | Number | Expected search

of buckets | per bucket | size (MB) | per file | size (MB) | of files time (sec)
3 512 4492188 17.136 1 17.1 512 76.94
4 4096 561524 2.142 1 2.1 4096 9.98
5 32768 70191 0.268 7 1.9 4682 1.56
6 262144 8774 0.033 59 2.0 4444 0.56
7 2097152 1097 0.004 477 2.0 4397 0.43
8| 16777216 138 0.001 3799 2.0 4417 0.42

Table 9: Index table characteristics for a = 8, m = 50, N = 50M, K = 2MB

Table 10 shows index table characteristics and a rough estimate of the running time

of the algorithm for different values of m. The number of documents is 50M, w = 5,

a = 8. As m gets larger, the hash table size increases, which increases search time.

By looking at Tables 8-10 and the ROC curves in Figures 12-14 we can find “good”

32

m Number Entries Bucket | Buckets | Bucket file | Number | Expected earch
of buckets | per bucket | size (MB) | per file | size (MB) | of files time (sec)

50 32768 70191 0.268 7 1.9 4682 1.56
60 32768 85450 0.326 6 2.0 5462 2.20
70 32768 100709 0.384 5 1.9 6554 2.95
80 32768 115967 0.442 4 1.8 8192 3.81
90 32768 131226 0.501 3 1.5 10923 4.77
100 32768 146485 0.559 3 1.7 10923 5.85

Table 10: Index table characteristics for a =8, w =5, N =50M, K = 2MB

values for the model parameters for the case of 50 million documents. From Table 8 and
Figure 12 we can see that although an increasing a has a great effect on the search time,
its effect on the detection probability is not significant. In that sense, choosing a proper
value for a will determine search time without effecting performance. The small values
of m are better for both search time and detection probability. Choosing a best value
for w requires more thought, since detection probability is inversely proportional to both
search time and w. Picking a value for w is thus a design issue: giving preference to
search time or to probability of detection.

To summarize, the effect of a, the size of the alphabet, can be seen from Figure 12.
The increasing value of a does not change the probability of detection significantly. But
from Table 8 we can see that the effect of a on the search time is great.

Figure 13 shows the effect of changing w, the window size. Increasing w makes the
detection probability worse. However a very small value (3,4) for w increases the search
time, since the bucket size increases significantly, requiring multiple disk accesses.

Figure 14 shows the effect of changing m, the signature size. Increasing m makes the
detection probability higher.

The surfaces defined by search time, detection probability and false alarm probability
can help the designer visualize the “relative goodness” of the operating point (Figure
15). For detection we can see that lower values of w and higher values of m are desired.
However, we can see that the probability of false alarm increases for low values of w and

high values of m. The search time favors high values of w and low values of m.

33

0.98f

0.96f -

0.94

Prob. of Detection

0.92

0.9

0.88

i i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Prob. of False Alarm

Figure 12: ROC Curves for 8 = 0.01, m = 50, w = 5 and various values of a (4,...,8).

0.94

0.92

0.9

Prob. of Detection

0.88

0.86

0.84 i i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Prob. of False Alarm

Figure 13: ROC Curves for g = 0.01 m = 50, a = 8 and various values of w (3,...,8).

34

0.98F i

m=100

m=90:

g 098FTsg0

8 m:?

© 094

8 m=60

o g
0.0+ oo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Prob. of False Alarm

Figure 14: ROC Curves for f = 0.01 w =5, a = 8 and various values of m (50,...,100).

A.4 System Design

Our model has two main profiles: performance and system resources. The performance
can be characterized by specifying the error tolerance. The system resources can be
thought of as defining constraints on the desired performance. It is hard to find a for-
mula that can give us optimum values of the model parameters (m, w, a) for given system
resources and performance range. But we can at least give a recipe for finding “good” val-
ues for the parameters. Once the system resources are characterized, making tables (like
Tables 8 and 9) for different combinations of the parameters (m,w,a), and considering
constraint equations (2-4) for different values of these parameters, helps us understand
the possible ranges of the parameters. Then, by drawing ROC curves and looking for a
desired detection probability range, we can shrink the ranges of the parameters further.

Let us comment on each parameter’s effect. The increase in the value of m (the size
of the signature) increases the search time and the size of the index table. However, the
probability of duplicate detection becomes higher (Figure 14).

The increase in the value of w (the window size) makes the detection probability

35

Prob. of False Alarm

Figure 15: (a) Probability of detection, (b) probability of false alarm, and (¢) search time
as functions of m and w.

36

lower (Figure 13). We can conclude from Figures 13 and 14 that only k = m —w + 1
(the number of keys) matters for the detection probability, because increasing w means
decreasing k, which lowers the detection probability.

The value of a (the alphabet size) has no significant effect on the detection probability
(Figure 12). But increasing it improves the detection probability, since the false alarm
rate drops.

The choice of a and w is crucial for the number of entries per bucket. The number of
entries per bucket affects the search time, and as the search time increases, the number
of entries increases. As w or a increases, the number of entries per bucket decreases, but

the errors increase. Smaller values of w are desirable for robustness.

37

